Диана Гаврилова Опубликована 16.07.2019 в 21:02

Может ли ИИ в энергетическом секторе помочь решить климатический кризис?

Как ИИ поможет бороться с глобальным потеплением?

Искусственный интеллект вызывает в памяти страх потери работы и проблемы с личной жизнью (вопрсы конфиденциальности), не говоря уже о научной фантастической дистопии. Но машинное обучение также может помочь нам сэкономить энергию и улучшить использование возобновляемых источников энергии.

Искусственный интеллект (ИИ) проникает в каждый уголок нашей жизни. Службы потокового видео используют его, чтобы узнать наши вкусы и предложить то, что мы хотели бы посмотреть дальше. ИИ победили лучших игроков мира в сложных настольных играх.

Некоторые ученые даже считают, что ИИ однажды сможет достичь сверхчеловеческого интеллекта, что приведет к апокалиптическим сценариям, напоминающим фильмы типа "Матрица".

Чтобы развеять подобные опасения, глобальный саммит ООН освещает применение ИИ для решения насущных проблем нашего времени, включая изменение климата.

В большинстве стран выбросы сокращаются недостаточно быстро. ИИ может помочь ускорить процесс. В частности, область, называемая машинным обучением, может обрабатывать колоссальные объемы данных, чтобы сделать энергетические системы более эффективными.

Чтобы выполнить Парижское соглашение, мы должны будем практически исключить использование энергии из ископаемого топлива во всех секторах экономики. Это будет означать децентрализованную сеть, варьируещееся производство возобновляемой энергии с потребителями, которые автоматически настраиваются, чтобы минимизировать потери и сбалансировать всю систему.

Хендрик Циммерманн, исследователь в области цифровизации и устойчивого развития в экологической неправительственной организации Germanwatch, говорит, что эффективное управление данными в таком масштабе возможно только с помощью ИИ.

"Чтобы иметь возможность разработать эту систему, нам нужны цифровые технологии и много данных, которые необходимо быстро собрать и проанализировать", — сказал Циммеранн DW. "Алгоритмы искусственного интеллекта или машинного обучения могут помочь нам справиться с этой сложной задачей и сократить выбросы".

Сокращение энергопотребления

Но цифровизация также сопровождается множеством проблем — не в последнюю очередь огромным количеством энергии, которую потребляет вся эта обработка данных. Симс Уизерспун — менеджер программ в Deepmind, британской фирме по искусственному интеллекту, принадлежащей материнской компании Google Alphabet, рассказала, что центры обработки данных — огромные "серверные фермы" по всему миру, в которых хранятся данные пользователей, — сегодня потребляют 3% мировой энергии.

Именно поэтому Deepmind решил использовать свои "универсальные алгоритмы обучения", чтобы уменьшить энергию, необходимую для охлаждения центров обработки данных Google, до 40 процентов.

На такие объекты приходится 3% мирового потребления энергии, и по мере того, как все больше и больше нашей экономики переводятся в цифровую форму, обеспечение их электропитания будет все более сложной задачей.

Центры обработки данных имеют конкретные действия и измеримые выгоды в своей работе, ИИ обрабатывают гораздо больше данных, чем мог обработать человек.

Система внедряется во все больше дата-центров Google, и Уизерспун считает, что ИИ может оказать огромное влияние в других областях. "Крупные промышленные системы потребляют 54% мировой энергии", — говорит она. "Представьте себе потенциал, если бы мы могли применить эту технологию к промышленным системам в целом. Мы считаем, что мы можем повлиять на изменение климата в еще более широком масштабе".

Некоммерческий институт Borderstep в Берлине внедрил (хотя и более простые) алгоритмы интеллектуального машинного обучения, чтобы сэкономить от 20% до 25% энергии, используемой для отопления клстера из 250 квартир в столице Германии.

"Мы использовали систему управления энергопотреблением дома, которая работает на трех уровнях: квартира, здание, кластер зданий с общим источником тепла", — сказал исследователь энергии из Borderstep Саймон Хинтерхолцер.

Используя датчики, расположенные вокруг квартир и зданий, система может определить, когда жители дома, и включить отопление. "Система учится благодаря вашему использованию, потому что все устройства подключены", — говорит Хинтерхолзер.

ИИ может оптимизировать не только энергопотребление, но и его производство.

Осмотр и техническое обслуживание турбин, которые часто связаны с вылетом персонала на ветряные турбины на вертолетах, составляют большую часть эксплуатационных расходов морских ветряных электростанций.

Рой Ассаф, исследователь ИИ в IBM, являющейся партнером общеевропейского проекта ROMEO, рассказал, что его команда использует глубокое обучение — метод машинного обучения, использующий математические функции, известные как "искусственные нейроны", — чтобы попытаться предсказать отказы морских ветряных электростанций с целью оптимизации технического обслуживания ".

В настоящее время они "тренируют" свои модели, используя предыдущие данные о напряжении, температуре, скорости ветра и влажности. Со временем эти модели будут развернуты в режиме реального времени, и по мере появления новых данных прогнозы должны стать более точными.

"Существует 1000 метрик, и не очень легко разобраться в этих вещах. Машинное обучение позволяет вам извлекать знания из всего одновременно", — сказал Ассаф.

Надежда состоит в том, что благодаря сокращению затрат на техническое обслуживание и простоя турбин, можно генерировать больше экологически чистой энергии, причем дешевле.

ИИ является одним из самых быстрорастущих секторов технологической индустрии. Является ли это в конечном счете выгодой или вредом для нашей планеты, вопрос не в том, используем ли мы интеллектуальные машины, а в том, что мы просим их сделать для нас.

Фото: thestandard. co. zw

Автор Диана Гаврилова
Диана Гаврилова — журналист, географ, внештатный корреспондент Правды.Ру и ЭкоСевер.Ру

Подписывайтесь на Экосевер

Читайте также

Парадоксальная жертва эволюции: люди утратили способность к синтезу витамина C, чтобы выжить сегодня в 10:41

Учёные обнаружили, что древняя потеря способности вырабатывать витамин C могла сыграть неожиданную роль в судьбе человека. Вот зачем нас ее лишили.

Читать полностью »
Когда Вселенная была жидкостью: Большой адронный коллайдер вернул нас к началу времён сегодня в 10:41

Физики ЦЕРН впервые получили прямое подтверждение загадочного поведения материи времён Большого взрыва. Что скрывает "первичный бульон"?

Читать полностью »
Если инопланетяне появятся — экономика рухнет первой: эксперт предсказала панику на Уолл-стрит сегодня в 9:12

Бывший аналитик Банка Англии предупредила: не геополитика и не ИИ, а подтверждение внеземной жизни может вызвать мгновенный крах рынков. И вот почему.

Читать полностью »
Астероид уничтожил динозавров — и эволюция нажала  на газ: скорость возрождения жизни шокирует сегодня в 7:54

После падения астероида, уничтожившего динозавров, жизнь на Земле возродилась гораздо быстрее, чем предполагали учёные. Как природа совершила это?

Читать полностью »
Парад планет: почему это происходит и что это значит для землян вчера в 17:52

Ученый Владимир Обридко объяснил EcoSever что на самом деле означает "парад" планет.

Читать полностью »
Космос подаёт сигнал каждые 44 минуты: их таинственный источник ошеломил учёных вчера в 10:29

Астрономы впервые зафиксировали рентгеновские лучи от редкого космического объекта ASKAP J1832-0911. Это открытие может изменить представления о звёздной эволюции.

Читать полностью »
Место, где не работают земные законы физики: что ВМС США скрывают на базе Патуксент-Ривер вчера в 8:17

На авиабазе Pax River может хранится аппарат внеземного происхождения. Что известно об отчёте Liberation Times и почему власти США всё отрицают?

Читать полностью »
В Новой Зеландии найдено кладбище древних птиц и лягушек: их убила катастрофа эпохального масштаба вчера в 6:04

В Новой Зеландии нашли пещеру с окаменелостями возрастом миллион лет. Среди находок — предки какапо и такахе, исчезнувшие после супервулканического извержения.

Читать полностью »