Диана Гаврилова Опубликована 16.07.2019 в 21:02

Может ли ИИ в энергетическом секторе помочь решить климатический кризис?

Как ИИ поможет бороться с глобальным потеплением?

Искусственный интеллект вызывает в памяти страх потери работы и проблемы с личной жизнью (вопрсы конфиденциальности), не говоря уже о научной фантастической дистопии. Но машинное обучение также может помочь нам сэкономить энергию и улучшить использование возобновляемых источников энергии.

Искусственный интеллект (ИИ) проникает в каждый уголок нашей жизни. Службы потокового видео используют его, чтобы узнать наши вкусы и предложить то, что мы хотели бы посмотреть дальше. ИИ победили лучших игроков мира в сложных настольных играх.

Некоторые ученые даже считают, что ИИ однажды сможет достичь сверхчеловеческого интеллекта, что приведет к апокалиптическим сценариям, напоминающим фильмы типа "Матрица".

Чтобы развеять подобные опасения, глобальный саммит ООН освещает применение ИИ для решения насущных проблем нашего времени, включая изменение климата.

В большинстве стран выбросы сокращаются недостаточно быстро. ИИ может помочь ускорить процесс. В частности, область, называемая машинным обучением, может обрабатывать колоссальные объемы данных, чтобы сделать энергетические системы более эффективными.

Чтобы выполнить Парижское соглашение, мы должны будем практически исключить использование энергии из ископаемого топлива во всех секторах экономики. Это будет означать децентрализованную сеть, варьируещееся производство возобновляемой энергии с потребителями, которые автоматически настраиваются, чтобы минимизировать потери и сбалансировать всю систему.

Хендрик Циммерманн, исследователь в области цифровизации и устойчивого развития в экологической неправительственной организации Germanwatch, говорит, что эффективное управление данными в таком масштабе возможно только с помощью ИИ.

"Чтобы иметь возможность разработать эту систему, нам нужны цифровые технологии и много данных, которые необходимо быстро собрать и проанализировать", — сказал Циммеранн DW. "Алгоритмы искусственного интеллекта или машинного обучения могут помочь нам справиться с этой сложной задачей и сократить выбросы".

Сокращение энергопотребления

Но цифровизация также сопровождается множеством проблем — не в последнюю очередь огромным количеством энергии, которую потребляет вся эта обработка данных. Симс Уизерспун — менеджер программ в Deepmind, британской фирме по искусственному интеллекту, принадлежащей материнской компании Google Alphabet, рассказала, что центры обработки данных — огромные "серверные фермы" по всему миру, в которых хранятся данные пользователей, — сегодня потребляют 3% мировой энергии.

Именно поэтому Deepmind решил использовать свои "универсальные алгоритмы обучения", чтобы уменьшить энергию, необходимую для охлаждения центров обработки данных Google, до 40 процентов.

На такие объекты приходится 3% мирового потребления энергии, и по мере того, как все больше и больше нашей экономики переводятся в цифровую форму, обеспечение их электропитания будет все более сложной задачей.

Центры обработки данных имеют конкретные действия и измеримые выгоды в своей работе, ИИ обрабатывают гораздо больше данных, чем мог обработать человек.

Система внедряется во все больше дата-центров Google, и Уизерспун считает, что ИИ может оказать огромное влияние в других областях. "Крупные промышленные системы потребляют 54% мировой энергии", — говорит она. "Представьте себе потенциал, если бы мы могли применить эту технологию к промышленным системам в целом. Мы считаем, что мы можем повлиять на изменение климата в еще более широком масштабе".

Некоммерческий институт Borderstep в Берлине внедрил (хотя и более простые) алгоритмы интеллектуального машинного обучения, чтобы сэкономить от 20% до 25% энергии, используемой для отопления клстера из 250 квартир в столице Германии.

"Мы использовали систему управления энергопотреблением дома, которая работает на трех уровнях: квартира, здание, кластер зданий с общим источником тепла", — сказал исследователь энергии из Borderstep Саймон Хинтерхолцер.

Используя датчики, расположенные вокруг квартир и зданий, система может определить, когда жители дома, и включить отопление. "Система учится благодаря вашему использованию, потому что все устройства подключены", — говорит Хинтерхолзер.

ИИ может оптимизировать не только энергопотребление, но и его производство.

Осмотр и техническое обслуживание турбин, которые часто связаны с вылетом персонала на ветряные турбины на вертолетах, составляют большую часть эксплуатационных расходов морских ветряных электростанций.

Рой Ассаф, исследователь ИИ в IBM, являющейся партнером общеевропейского проекта ROMEO, рассказал, что его команда использует глубокое обучение — метод машинного обучения, использующий математические функции, известные как "искусственные нейроны", — чтобы попытаться предсказать отказы морских ветряных электростанций с целью оптимизации технического обслуживания ".

В настоящее время они "тренируют" свои модели, используя предыдущие данные о напряжении, температуре, скорости ветра и влажности. Со временем эти модели будут развернуты в режиме реального времени, и по мере появления новых данных прогнозы должны стать более точными.

"Существует 1000 метрик, и не очень легко разобраться в этих вещах. Машинное обучение позволяет вам извлекать знания из всего одновременно", — сказал Ассаф.

Надежда состоит в том, что благодаря сокращению затрат на техническое обслуживание и простоя турбин, можно генерировать больше экологически чистой энергии, причем дешевле.

ИИ является одним из самых быстрорастущих секторов технологической индустрии. Является ли это в конечном счете выгодой или вредом для нашей планеты, вопрос не в том, используем ли мы интеллектуальные машины, а в том, что мы просим их сделать для нас.

Фото: thestandard. co. zw

Подписывайтесь на Экосевер

Читайте также

Робот-гибрид Caltech объединил функции ходьбы, езды и полёта — TII сегодня в 9:10
Робот научился выпускать из себя дрон и двигаться, как живое существо

Робот Caltech запускает со спины дрон, превращая его из наземного в летающий аппарат. Учёные уверены: это шаг к новой эре автономных машин.

Читать полностью »
Зафиксировано столкновение астероидов у Фомальгаута — астроном Калас сегодня в 1:59
Напылили на всю галактику: астрономы впервые увидели столкновение двух астероидов — искромётное зрелище

Астрономы впервые наблюдали столкновение астероидов у звезды Фомальгаут. Как это далёкое событие может раскрыть тайну рождения планет, таких, как Земля?

Читать полностью »
IBM представила квантовые процессоры Nighthawk и Loon — учёные вчера в 20:10
Квант взорвал привычную физику: IBM показала машины, которые думают иначе

IBM представила два квантовых процессора и новую систему для отслеживания квантового прогресса — шаг к настоящему квантовому превосходству и вычислениям.

Читать полностью »
Обнаружены следы сверхмассивных звёзд в ранней Вселенной — астрофизики вчера в 16:14
Эти звёзды жили меньше миллиона лет, но изменили всё: тайна ранней Вселенной раскрывается

Учёные нашли химические следы звёзд-гигантов ранней Вселенной. Эти краткоживущие объекты могли стать источником первых сверхмассивных чёрных дыр.

Читать полностью »
Психолог рассказала, как выполнить новогодние обещания — Pravda.Ru вчера в 15:35
Почему клятвы под ёлочкой заканчиваются депрессией в феврале? Психолог объяснила, как избежать новогодней ловушки

Новогодние обещания внушают надежду, но часто становятся источником стресса. Как превратить их в реальные шаги к изменениям и не потерять веру в себя?

Читать полностью »
Дезинформация присуща всем живым существам — JR Soc Interface вчера в 12:40
Даже бактерии врут: учёные с удивлением обнаружили, что ложь — фундаментальный закон биологии

Учёные выяснили, что ложные сигналы возникают не только у людей. Как бактерии, птицы и одноклеточные вводят друг друга в заблуждение — и зачем это нужно природе?

Читать полностью »
Трекеры сна показали связь глубины отдыха с восстановлением тела — учёные вчера в 8:10
Каждая ночь — как лотерея: трекеры сна раскрывают, куда исчезает наша энергия

Современные трекеры сна помогают понять, насколько качественно вы отдыхаете. Какие модели выбрать и на что обратить внимание при покупке?

Читать полностью »
Фазы Венеры изменили её видимую яркость в течение орбиты — астрономы вчера в 4:12
Звёзды меркнут, а Венера сияет: планета нашла способ выглядеть ближе, чем есть на самом деле

Почему Венера кажется ослепительно яркой даже на фоне звёзд и иногда видна днём — дело не только в расстоянии, но и в её необычной атмосфере и фазах.

Читать полностью »